
Journal of Statistical Physics, Vol. 87, Nos. 5/6, 1997 
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In this paper, the first microscopic approach to Brownian motion is developed 
in the case where the mass density of the suspending bath is of the same order 
of magnitude as that of the Brownian (B) particle. Starting from an extended 
Boltzmann equation, which describes correctly the interaction with the fluid, 
we derive systematically via multiple-time-scale analysis a reduced equation 
controlling the thermalization of the B particle, i.e., the relaxation toward the 
Maxwell distribution in velocity space. In contradistinction to the Fokker- 
Planck equation, the derived new evolution equation is nonlocal both in time 
and in velocity space, owing to correlated recollision events between the fluid 
and particle B. In the long-time limit, it describes a non-Markovian generalized 
Ornstein-Uhlenbeck process. However, in spite of this complex dynamical 
behavior, the Stokes-Einstein law relating the friction and diffusion coefficients 
is shown to remain valid. A microscopic expression for the friction coefficient is 
derived, which acquires the form of the Stokes law in the limit where the mean- 
free path in the gas is small compared to the radius of particle B. 

KEY WORDS: Brownian motion; Fokker-Planck equation; non-Markovian 
process. 

1. I N T R O D U C T I O N  

This paper is concerned with a microscopic theory of the Brownian motion 
performed by a massive particle suspended in a gas of much lighter 
particles. Because of the mass and length-scale difference between the two 
components, one expects to eliminate the fluid variables from the description 

Knowing the interest of Matthieu Ernst in the subtle and fundamental problems of kinetic 
theory, we have the pleasure to dedicate this study to him. 

Laboratoire de Physique, Ecole Normale Sup6rieure de Lyon (URA CNRS 1325), 69007 
Lyon, France. 

2 Institute of Theoretical Physics, Warsaw University, 00-681 Warsaw, Poland. 

1005 

0022-4715/97/0600-1005512.50/0 (' 1997 Plenum Publishing Corporation 



1006 Bocquet and Piasecki 

of the system and obtain a closed equation for the Brownian particleJ ~-31 
Traditionally, this task is done by assuming that the dynamical properties 
of the Brownian particle (B) evolve on a time scale much longer than the 
characteristic time scale of the fluid. This approach leads to the well-known 
Fokker-Planck equation, which governs the time evolution of the distribu- 
tion function f(R, V; t) of the position R and velocity V of particle B: 

+ V .  f ( R , V ; t ) = ( ~ - ~ .  V+ M 0 v j f ( R ' V ; t )  (1) 

M denotes the mass. In this equation, the fluid enters only through the 
friction coefficient ( and the temperature T. 

An equivalent description can be obtained starting from the stochastic 
Langevin equation 

M dV= -M(V( t )  + F(t) 
dt 

(2) 

where V(t) is the velocity of B and F(t) is the fluctuating part of the force 
exerted by the fluid, assumed to have a white spectrum. This equation leads 
to an exponential decay of the velocity autocorrelation function with a 
relaxation time given by ( -  ,.t 1, 2) 

On the other hand, some attempts at a fully microscopic description 
of the dynamics have been made. 14-9) It has indeed been possible to get rid 
of the stochastic assumption and obtain the Fokker-Planck equation by a 
systematic expansion of the dynamics of the complete system, bath + B 
particle, in powers of the square root of the mass ratio m/M, where m is 
the fluid particle mass. Such derivations lead in particular to a microscopic 
formula for the friction coefficient in terms of the autocorrelation function 
of the force acting on the B particle. 

However, as pointed out by many authors, (t~ but already by 
Lorentz in 1911, (~4) the description based on Eqs. (1) and (2) can only be 
valid if the ratio P/PB of the mass density of the fluid p and that of the B 
particle PB is very small (PB is defined as the mass M of particle B divided 
by its own volume, so that PB ~ M/Z3, where s is the B-particle diameter). 
Indeed, as noticed above, the velocity of particle B relaxes on a time scale 

~- ~ ( -  1. If Stokes' law is assumed, this leads to �9 r- ~ M/rlZ, where r/is the 
viscosity of the fluid and X the B-particle diameter. On the other hand, a 
typical hydrodynamic time of the fluid is of the order 3, ~ s which 
is the time for a shear flow to propagate over the distance 22. These rough 
estimates give z,/zv ~ P/P B, so that the assumption of a wide time scale 
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separation is only justified if this ratio is small. This condition is unfor- 
tunately far from the experimental situation, where the mass density ratio 
P/PB is taken rather close to unity to avoid sedimentation of particle B. 
In this case, the fluid dynamics must contain slowly decaying modes, which 
relax on the same time scale as the velocity of the B particle. In other 
words, non-Markovian effects are expected and the validity of the Fokker-  
Planck or Langevin equations becomes doubtful. 112~ 3 

Several attempts have been made to overcome these difficulties and 
determine the dynamical evolution in the general case, that is, for any 
(finite) pip B. ~t~ ,i. 15~ The main idea underlying all these works is that the 
slowly decaying fluid modes result from the momentum conservation law 
for the fluid particles. A correct description should therefore treat both 
fluid and B-particle variables on the same level. This can be done, for 
example by using fluctuating hydrodynamics for the fluid motion, with 
appropriate boundary conditions on the surface of the suspended B par- 
ticle. I~~ These approaches lead to a non-Markovian Langevin equation, 
involving the time-dependent friction coefficient ((t): 

dV rt 
M - -  = - M l d r ( ( t - z )  V(z)+ ~(t) 

dt Jo 
(3) 

On the other hand, only simplified microscopic versions of this problem 
have been considered, including one B particle interacting with a gas of 
point particles, showing that in such cases, the velocity process is an 
Orstein-Uhlenbeck one. ~ 16) 

We present here the first systematic, microscopic approach which 
treats the B particle and the fluid at the same level, clarifying and providing 
the fundamental basis for the phenomenological descriptions. The problem 
is reconsidered within the kinetic theory of gases. The system consists of a 
single large, heavy hard sphere (mass M, diameter ~r) suspended in a fluid 
of small, light hard spheres (mass m, diameter a). The dynamics of the 
system will be assumed to be governed by an extended Boltzmann equation 
which correctly takes the gas-B-particle collisions into account. The same 
type of equation was used by van Beijeren and Dorfman to develop the 
kinetic theory of hydrodynamic flows and in particular to clarify the 
dynamical origin of the hydrodynamic Stokes law for the friction coef- 
ficient317~ The extended Boltzmann equation is expected to be correct in 
the Grad limit, defined for the gas with number density n by n ~ 00, a ---, 0, 

3 Let us note, however, that the Smoluchowski equation describing the spatial evolution of the 
B particle is not affected by these arguments, since the position of the B particle relaxes on 
a time scale much longer than the velocity (or fluid) relaxation times. 
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the mean free path l = (na 2) - t  = const.~ ~8) We choose the diameter Z of the 
B particle to fix the length scale. The condition of a constant mean free 
path thus imposes 

Z 
- -  = na2Z = const (4) 
l 

Moreover, and unlike all previous work, we require from the beginning the 
condition of essentially equal mass density of the gas and the B particle. 
In other words, the ratio P/P B will be kept finite even in the small-mass- 
ratio limit, which amounts to assuming 

M 
S3 = const x mn (5) 

Finally, we define the small parameter corresponding to the Brownian limit 

= ~ 1 (6) 

Introducing the diameter ratio K = a/Z', we characterize the asymptotic 
regime (4)-(6) by the limit 

{e ~ 0  
l~'~e, n~F3,-,g -2 (7) 

To simplify the calculations and without loss of generality, we will assume 
in the following that e = x  and rt~ "3=$-2. This can be looked upon as 
redefining the parameters of the system (_r, M, n,...), to set the two con- 
stants introduced in Eqs. (4) and (5) equal to one. The correct scaling will, 
however, be recovered in the final results. 

Starting from the extended Boltzmann equation, we will perform a 
systematic expansion of the dynamical properties of the system in powers 
of e, in order to obtain a closed equation for the distribution function of 
particle B. 

The following results will be obtained: 

(i) On the shortest time scale, t ~ z v ~ r j ,  the B particle "does not 
move" (in position space), whereas its velocity distribution relaxes in a 
thermalization process. 

(ii) The equation (65) characterizing the relaxation of the velocity 
distribution is not a Fokker-Planck equation. It exhibits a complex non- 
Markovian character, which stems from building up the dynamical friction 
force by recollision events between the gas and the B particle. 
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(iii) We will be able to express the autocorrelation function (ACF) of 
the velocity of the B particle in terms of the time-dependent friction coef- 
ficient. A microscopic formula for this coefficient follows from our analysis. 
The final result justifies the phenomenological expression for the velocity 
ACF, based on fluctuating hydrodynamics. 

(iv) In spite of non-Markovian effects, the Stokes-Einstein relation, 
expressing the diffusion constant of the B particle in terms of the friction coef- 
ficient, is explicitly derived. 

2. K I N E T I C  E Q U A T I O N S  

In the study of the dynamics of the B particle immersed in a bath of 
N small spheres, the short-hand notation 

B = ( R ,  V); i = (ri, v,.), i = 1 , 2  ..... N (8) 

will be used for the positions and velocities of the B particle and the N gas 
particles. 

The temperature T of the gas introduces characteristic measures, 
~ / M  and k,v/~aT/m of the velocities of the B and fluid particles, 
respectively. On the other hand, the characteristic length scale in the 
system is given by the diameter Z" of the B particle. In order to study the 
asymptotic regime (7), it is convenient to use dimensionless variables 
defined by 

V =  - ~  U, vj= u. 
/KB: 

"q m 

R = Z'X, r i =  Z'xj 
(9) 

The shortest time scale in the system is fixed by the gas-B-particle collision 
frequency, and we introduce accordingly a dimensionless time variable ~ by 

t = ~ _  r (lO) 

Our aim is to determine the dynamical evolution of the B-particle 
distribution function fs(B; t). To this end, we need to introduce the joint 
distribution, fB~(B, 1; t), representing at time t the number density of fluid 
particles in state 1 when at the same time particle B is in state B. Finally, 
we define the conditional distribution function of the gas f~ t B by 

fst(B, 1; t)=fB(B; t)ftla(11B; t) (11) 
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Under the dimensional scaling (9), the dimensionless distribution func- 
tions FB and Ptls are defined by the relations 

Fa( B, z) = ~'3(ka T/M) 3/2 f s( B; t) (12) 

and 

Flirt( 1 I B; r) = ~r3(k n T/m) 3/2 ft Is( 11 B; t) (13) 

However, whereas FB(B; z) is essentially of order unity, Ptla does diverge 
as e ~ 0. Indeed, far from the suspended sphere B, the conditional distribu- 
tion function f t ls  is of the order of the density n of the gas, which implies 
[ according to condition (7) ] 

F, la ~ nX3 ~ e-2 (14) 

Having in view a perturbation expansion, we thus introduce rescaled dis- 
tribution functions F~ is(1 IB; z) and Fro(B, 1; r) defined as 

File(1 IB; r) = e2Plla(1 IB; r) 
(15) 

Fat(B, 1; z) =e2Fs(B; r) F, la(1 IB; z) 

which are of order unity when the small parameter e goes to zero. 
The scaled distribution functions evolve in time according to the 

coupled equations 

(O 3 O )  f d l  Tr'_(B, 1) 1; -~z+e U .-~ Fs(B; z)= Fro(B, r) (16) 

{0+30 0 
e U-~-~+e'- (ut "~x t -  T~_(B, t ) ) )Fro(B,  1;r) 

=Id2{T~(B,  2)+e2T_(1,2))Fa,2(B, 1,2;r) (17) 

where the factorization of the three-particle distribution 

FaI2(B, 1, 2; t) "~- Fa(B; t) Ftls( l l B; t) Ft~a(2 [ B; t) (18) 

is expected to hold in the Grad limit [see the discussion leading to (4)]. 
Equation (16) expresses the fact that the B-particle state changes in 

time through free motion (left-hand side, l.h.s, of the equation) and 
through collisions with gas particles (right-hand side, r.h.s., of the equa- 
tion). The second equation (17) states that the two-particle distribution, 
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Fro, evolves in time owing to free motion and collisions between the pair 
(B, 1 ) (1.h.s. of the equation), and also owing to collisions of this pair with 
the surro~unding gas particles (r.h.s. of the equation). Roughly speaking, 
Eq. (16) characterizes the time evolution of particle B due to collisions with 
the fluid, while the dynamics of the fluid, reacting to the B-particles' 
motion is contained in Eq. (17). 

These evolution equations involve two hard-sphere collision operators, 
:T~'__(B, 1) and T_(1, 2). The first of them characterizes the effect of binary 
collisions between the B particle and a gas particle. It reads 

T~_(B, 1)=~2 f d# [(eU-u,).#] 0 [ ( e U - u , ) . # ]  

x{6(X-~#-x,)b~(B, 1 ) - 6 ( X  +~#- -x , )}  (19) 

where ~ = 1/2 is the dimensionless radius of the B particle; the operator b~ 
transforms the precollisional velocities into postcollisional velocities: 

[b](B, 1) z](U,  u,) 

(u- 2e [ ( e U - u , )  ~] # ,u  I 2 ) =~ f \  l + e 2  �9 + 1---~e2 [ (eU - u,) - t~] c~ (20) 

where # is the unit vector along the axis joining the centers of the two 
spheres at contact and Z is any function of velocities U and u t. 

On the other hand, T_(1, 2) characterizes the effect of binary colli- 
sions between the fluid particles. It is given by 

T_(1,2)=~d#(u,2.O)O(u,2.#)6(x,2){b,~(1,2)-I } (21) 

where ul2 = u j - u  2, x~2=x~ - x 2 ,  and ba acts as b~. in Eq. (20), with e =  1 
(collision between equal mass particles). Note that the dimensionless cross 
section of the gas, (O'/~Z')z----e 2 [see Eq. (7)], has been extracted from the 
expression of T_ and displayed as a prefactor in Eq. (17). 

In Eqs. (19) and (21), the fluid part of the collisional transfer is not 
present since we consider the Grad limit: at encounters, the positions of the 
particles coincide. ~19) 

To solve the system of integrodifferential Eqs. (16)-(17), we have to 
define the initial state of the system. As in our previous work, ~8' 9) we shall 
assume that the fluid is initially in conditional equilibrium in the presence 
of particle B: 

F~,(B, 1; r =0)  = F~(B; r = 0 )  Feq(1 [X) (22) 
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with 

Fcq(1 Ix)= o(IX-x, I-~) ~(u,) 

where 

~b(u) = (2n) - 3/2 exp( -- u2/2 ) 

(23) 

(24) 

is the Maxwell distribution and O is the Heaviside step function. 
Before closing this section, let us recall some results concerning the e 

expansion of the collision operator T':(B, 1), which will be used in the 
course of the analysis. The calculations leading to them, though technical, 
are quite straightforward and have been presented in our previous paper 
(ref. 8, cited henceforth as I). 

The B-gas collision operator can be formally expanded in powers of 
e = (m/M) '/2 as 

TL(B, 1)= T(_~ 1) + eT'_t)(B, I) +e2TI~)(B, 1)+ ... (25) 

The zeroth-order term T~~ 1 ) characterizes collisions of the gas particles 
with the immobile B particle, acting as an external field. One finds 

t" 
T,_~ 1)=~2 j d S ( - u , . 8 )  0 ( - u , . 8 )  

x {6(X-~8-x , )b~~  l ) - 8 ( X  + ~ 8 - x , ) }  (26) 

where b~ ~ represents the change of velocity of a gas particle undergoing a 
specular collision with the B particle fixed at point X [see Eq. (20), with 
,~=0]. 

The first-order correction has a much more complicated form (see 
Appendix of I for the full expression), but we will only need the action of 
T~!~(B, 1) on a state in which the gas is in conditional equilibrium (23). 
In this case, one finds the following formula: 

T'_t)(B, 1 ) F(B) F~q(1 I X) 

= F ( b ) U . - ~ F c q ( I I X ) - - ~ _ ( I )  . ~ - ~ + U  F(B)FCq(IIX) (27) 

where the notation o~.(1) has been introduced to denote a dimensionless 
microscopic "force" 

~'.v(1)=~2 f d S E 2 ( u l . 8 ) 2 0 ( ~ u , . 8 ) ]  S d ( X - x l - ~ 8 )  (28) 
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We shall also need some formulas involving integration over the fluid 
degrees of freedom. First, one can verify that the integrated zeroth-order 
term identically vanishes: 

I d l  T(_~ 1)Fro(B, 1)=0 (29) 

The first-order term is given by 

0 
I d l  Tt_~)(B, I)Fro(B, I ) = - I  dl-~+(I)  .-~--~Fn,(B, 1) (30) 

with ~§ defined in Eq. (28). 
The general expression for the integrated second-order term is more 

involved [ see Eq. (31) of I for the complete formula], but when the fluid 
is in conditional equilibrium, it reduces to 

8 O O 
(31) 

3. THE M U L T I P L E - T I M E - S C A L E  A N A L Y S I S  

The system of coupled equations (16), (17) will be studied in the 
Brownian limit where e ~ 1. As in our previous work, this will be achieved 
systematically by using a multiple-time-scale analysis, which leads to a 
uniformly convergent e-expansion, avoiding secular divergences as time 
goes to infinity. We just recall here the spirit of the method. In the e--, 0 
limit, different time scales separate out in the system. Accordingly, we replace 
the distribution functions Fs, Fm by auxiliary functions F'~(B; to, r~, r2,...), 
F '~ (B ,  1; to, r), r2,...) which now depend on many time arguments. The 
time derivative is replaced accordingly by the operator 

O r o + e ~ + e 2  _ + " "  (32) 

The auxiliary functions are also expanded in powers of e: 

�9 7 - - ( 9 )  
F'j~= F(t~)) + eF~)  + e-l"'d + . . .  

F':n, = r(ff, ) + er~,)  + e2F(~, ' + . . .  
(33) 

The expansions (32), (33) are substituted into the evolution equations (16) 
and (17), supplemented by (18), and terms of the same order in e are iden- 
tified. The determination of successive corrections F~ ~, F~t ) (k = 0, 1, 2,...) 
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is then achieved by combining the chosen initial condition with the require- 
ment that the expansion in e be uniform with respect to time, which 
amounts to eliminating secular divergences. The physically relevant solu- 
tion of Eqs. (16) and (17) is then obtained by restricting the originally 
independent multiple time variables to, 31, 32 to the "physical line": 

Zo=V, 31=er, T2=ez3 .... (34) 

on which the operator (32) reduces back to a/0z. The dependence of the 
distribution functions on the variable 3j essentially defines the dynamical 
evolution on the time scale 3 -~ e-J, j = 0, 1, 2,.... 

Finally, we shall assume that the initial condition is entirely contained 
in the zeroth-order terms: 

F~)(B; r 0 = 0 ,  3, = 0 ,  ~2 = 0,...) = F~(B;  3 = 0 )  

F~I)(B, 1; 30=0, 31 =0 ,  32=0,... ) = F~I(B, 1; r = 0 )  
(35) 

4. z-EXPANSION AND DERIVATION OF THE REDUCED 
EQUATION FOR THE B PARTICLE 

We first consider the zeroth-order terms in the coupled kinetic equa- 
tions (16)-(17). Since at this order the integrated gas-B collision operator 
vanishes [see Eq. (29)], we are left with 

F~)(B; Zo, r l ,  r2,...) = 0 
030 

a 
Or ~ F~I)(B, I; 30, r l ,  32,..) = 0 

(36) 

So both distributions, F ~  ) and F~l ) do not depend on the time variable z o. 
To first order in e, the kinetic equations reduce to 

0 z o F ~ ) +  F ~  >= 

~ F~I) + a-~l F~|) = ;  O, o 

dl  T(I_)(B, 1)plo)/;.(o) (37a) 

d2 T"~(B, 2) ~,lo)~,lo) too) (37b) ~B ~IIB~21B 

The action of the collision operator TI_ ~J is given in Eq. (30). Since F ~  ) and 
F~I ) and the r.h.s, of Eqs. (37) are independent of Zo, we must impose 
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0 
03o 
--F~)(B; To, Tl, ~2,..-)=0 

O-~oF~I)(B, 1; To, Ti, 32,..) = 0 

(38) 

to eliminate secular divergences. On the other hand, one can verify that 
Eq. (30) implies 

f d l  T(_~)(B, 1) Fs(B)F"q(1 IX) =0 (39) 

The integrated operator T~ ) applied to a state of the system in which the 
fluid is in conditional equilibrium vanishes after integration over the fluid 
variables, whatever the state of particle B. Hence, the solution of Eqs. (37) 
consistent with the initial condition (22) has the form 

0 
Ovl F~)(B; rl, 32,..) =0  

r]~)e(l [B)= req(1 [X) (40) 

The evolution of the system takes thus place on a longer timescale, 
corresponding to variable zz. The second order terms in the kinetic equa- 
tions ( 16)-(17) yield the relations 

0F (2 ,  0 F~)+  ~ 
0~o ~ +-~, 03~ 

=fdl T~'(B, 1)F~'req(llX)+fdl T'_~'(B, 1) p(0)~'(,,_s --,,e (41a) 

O--~-F(') + O-~ r~'req(1 IX) 0--0zoF~l~+0rl m 03_, 

( 0  ) 
+ u t .~x i -T~) (B ,  1) F~F"q(IIX)  

=~ d2 T(~)(B, 2) F~r"q(1  IX) F"q(2 [ X) 

+ f d2 T~'(B, 2) F~)Feq(1 IX) F~'l)s 

+ f d2 T_( 1, 2) F~'Feq(1 IX) Feq(21 X) (41b) 
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In obtaining these equations, the equality pt0, = F e q ( l l X )  and the relation - - l i b  
(39) have been taken into account. 

Since F ~  J and F~l ~ are independent of 3 o and 3~, and F~ ~ and F~l ~ 
of r o, we conclude from (41) that in order to eliminate secular divergences 
one has to impose 

030 F~'(B; 3o, 3,, r_,,...) =~ro F~I'(B' 1; 30, 3t'l, r2,... ) = 0 

8-~IF~(B; 3,, r2,...) = 0-~l F~t)(B, 1; 31 , 32,..) 

= 0-~ Fr IB; rl, z2,...)=0 (42) 

Now, since F e q ( l l X )  is the conditional equilibrium of the gas in the 
presence of the fixed B particle, the following relations are satisfied: 

(o ) 
u, . ~ x  I - T'~ 1) Feq(l IX)=0  (43a) 

I dl  T_(I, 2) F~q(1 IX) F~q(21 X) =0  (43b) 

In view of these equalities, both evolution equations (41a) and (41b) are 
found to reduce to 

6332 ~-~.  ~--~+U F ~ +  dl  T"~( B , -  1) ~'~ - r i b  (44) 

where formula (31) for T~)(B, 1) has been used and we defined the 
Boltzmann friction coefficient (B by 

(8=~2 ~n/ /~  (45) 

The first term on the r.h.s, of (44) characterizes the instantaneous 
"static" friction force induced by collisions of the gas particles with par- 
ticle B. By analogy with the hydrodynamic expression for the friction force 
(( x velocity), the role of the velocity is played here by (8/OU + U) F~ffI(B). 
On the other hand, the physical meaning of the second term on the r.h.s. 
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of(44) can be clarified by introducing a mean dynamic friction force~+ 
defined by 

~+(B; v2) = f d l  ~+(1) Fr I B; r2) (46) 

This time-dependent force characterizes the "dynamical" part of the drag 
on the B particle, induced by the correlations building up inside the gas, in 
response to the motion of particle B. Using this definition, Eq. (44) can be 
rewritten 

J•2F•I(B; r2,...) 

O. 0 
(47) 

To close this equation, we have to evaluate the friction force (46). To this 
end we must consider the third-order terms in the kinetic equations (16), 
(17). 

We first note that the reasoning already presented concerning the 
secular divergences [see Eq. (42)], when applied to the third-order equa- 
tions, yields 

~ro F~'(B; r o, r , ,  r2,...)= ~ to, rl ,  r2,...) F~|)( B, 1; 0 

O F~(B; rt ,  r~,...)=O-~tF~I~(B, 1; rl ,  r2,...) 
0rl 

0 F',]~(11B; r , ,  re,. . .)=0 
0z| 

(48) 

The evolution equations to third order in e thus take the form 

0 F ~ ) + ~ F ~ , + U .  0 o, 
Or2 0r3 ~ F~ 

f dl T'I)(B, 1) F~,' + f dl T(2)(B, 1) F~l) + f al T(3_)(B, 1) ~(~ - -  ~ B I  

(49a) 
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0 {F~,Fllll)s+F~)Feq(1 IX)} +0_~3F~,F~q( 1 IX) 
0v 2 

+ u , . ~x~ -  T~I(B' 1) ~-~o~-~,1 - - B  - - l i b  

+ u. ~ - ~ m ( B ,  1) e~e~ 

= I d2 T~)(B, 2)F~:= + I d2 T~)(B, 2)F~I)= + I d2 T'_3)(B, 2)F~t)2 

+ I d2 T_(1, 2) F~I)2 (49b) 

where the relation (43) has already been taken into account. The functions 
F~l)= {Fs F, is} ,k~ and F~I �89 = {FsF , I sF21s} {/') in the collision terms repre- 
sent the kth-order contributions k = 0, 1, 2. For instance, 

F~,~(B, 1, 2) = {FeF , ,sF2 is} '~-) 

= F~'F~ I x)  Feq(21 x)  
L-,( l ) + F~'{F',',~F~ IX)+ F~ IX) .-~,A 

+F~){F]]~sF~q(2IXi+F~q(IIX) ~'~-1-2,,, -'v"'--, Is-zls,~"1' ~ (50) 

Our concern is now to obtain a closed equation for the conditional 
distribution of the gas F]',}s(1 [B). To this end, we have to eliminate the 
terms containing the r3-variable, which can be achieved by subtracting 
from (49b) the first equation (49a) multiplied by Feq(1 IX). One finds 

0 
= T~'(B, 1)F~)F~q(1 I X ) - F ~ ' U .  ~--~ Fcq(1 IX) 

+ I d2 TI_t)(B, 2) ~o) ~-ll} p{,l ~ B  - - I l B ~ 2 l B  

+ I d2 Tt2_'(B, 2) F~Ft~'I}sF~q(21 X) 

+ I d2 T_(1, 2) F~'{F~l~sFeq(2lX) + Feq(1 IX) F~'l~ } (51) 
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The last term of (51) introduces the (dimensionless) linearized Boltzmann 
operator A s( 1 ), defined as (19) 

f/W(1 ]B)~ W(21B)~] 
AB(1) 7t(11B)--f d2F~q(1 iX)(k(u2)T-(l'2) l~ ~(--u~) ) +  ( ~-u-~ J J  

(52) 

where $(u) is the Maxwell distribution. Note that AB(1) acts only on the 
fluid variables. 

With the use of relations (27), (30), and (31), Eq. (51) reduces to 

{0-~2 +u, "~x,0 T~)(B, 1 ) -  AB(1) 

O " (,-~+ ( B) -(~ (O~-~ + U) ) } F~)(B) FI, I,~( I I B) 

0 =-,.~_(1).(-~+U)F~)(B)F~q(I[X) (53) 

The notation 

and 

0 
~:=u, ~x, T~)(B, 1)--As(1) 

(54) 

F .... (B, 1; r2) =F~)(B) F(l't~(1 IB) (55) 

allows us to cast (53) in a more transparent form 

{~r2 +.Lpf+ s } F . . . .  (B, 1; r2) 

(o) 
= -~_(1) -  ~--~+U F~)(B; z2) F'q(1 IX) (56/ 

The force -C~ appearing in the definition (54) of 5r can be interpreted as 
the total friction force acting on particle B. The system of equations (47), 
(56) is closed and characterizes the dynamical evolution of the distribution 
functions on the z2 time scale. 

822/87/5-6-4 



1020 Bocquet and Piasecki 

The formal solution of Eq. (56) can be written as 

Fc~ 1; r2) = - - ds exp - "ds' (Let+ s ,~-_(1 ) 

x -~ + U F~'(B; s) F~q(1 l X) (57) 

However, as can be verified from the definitions (54) combined with rela- 
tions (26), (52), and (46), s acts only on the fluid variables, while s acts 
only on the velocity of the B particle. The two operators thus commute and 
the solution for F .... (B, 1) reads 

ro2 Fc~ 1; rz) = -- ds ~_(1;  -(r2-s))F~q(llX) 

, 0 
•  ~.We(s )}(-~-~+ U) F~(B; s) (58) 

where o~(1;  - r )  denotes the force o~_(1; 0) on particle B propagated by 
the intrinsic fluid dynamics in the presence of the B particle, fixed at point 
X [see the definition of ~t_01, (26)], backward in time to the instant - r .  

The dynamical part of the mean friction force, o~+(B), defined in (46), 
can now be obtained by multiplying (58) by ~-+(1) and averaging over the 
fluid variables. This yields 

9+(B;  r2) F~(B; r2) 

---fdl o~+(1) F .... (B, 1.] z'2) 

~' - "- ds' 8 U =fo'dSCgdYn(r2--s) exp{ ~,. 2'e(s ' )}(~--~+ )F~'(B;s) (59) 

where we have introduced c~dYn('t'), a force-force correlation function, 
defined by 

r = ~ f d l  o~_(1; - - r ) .  ~-+(1; 0) Feq(1 IX) 

1 ( ~  ( l; --'g)' ,~+( 1; O))teq]X) (60) 
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By using the notation (..,)(~ql x) we stress the fact that the average is taken 
over the equilibrium ensemble of the fluid in the presence of particle B fixed 
at point X. The prefactor 1/3 stems from the isotropy of the system around 
the B particle. 

Moreover, Eq. (59) can be seen as a self-consistency relation for the 
(time-dependent) mean force ~§  because the propagator LaB defined in 
(54) itself depends on the friction force ~§ Substituting this expression for 
.~§ in Eq. (47), one arrives at a reduced equation for the distribution of the 
B particle 

8 F~))(B;r2) 0 ( 0  U) 

f0 2 + dsC~dy,,(T __S) 0 
- O U  

r~ 
- . -ds '  ) xexp{ S, ,6,> 

where LaH is defined in (54) and (O tgdyn in (60). 
At this stage, we can return to the original variables R, V and t, using 

relations (9), (10), (12), and (13). For the sake of simplicity, we keep the 
same notations for (t~, ffOy,, and for different forces and propagators 
involved in the evolution equations. Their full expressions are now given by 

1 f X ' S  2 8 i/', 
( e = -~ ~~ ) ~ n( 2~mkB T) (62) 

C 6 ~ d y n ( t  ) - -  _ _  
1 

(o~(1 ;  - t ) .  o~+(1; 0)),~ql R) (63) 
3MkBT 

where the formula for the microscopic forces ~-_+ now reads 

7)2f ~ ( 1 ) =  "~ d(~2m(vl.#)zO(-T-vl.#)#b R -  # - r  w (64) 

In (63), the notation (eqlR) stands for an average over the equilibrium 
ensemble of the gas, in the presence of particle B, fixed at R. The dynamics 
is characterized by the propagator ~ ,  given in the Appendix together with 
LaB [for the dimensionless form, see Eq. (54)]. 

Keeping in mind that we are only interested in the dynamics of the 
system on the time scale characterized by the variable r2, i.e., r ~ e -2 Iv is the 
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dimensionless time variable defined in Eq. (10)], we obtain the following 
equation for the distribution function fB of the B particle: 

atfs(B; t ) = ( s ' ~ .  V +  M OVJ fs(B; t) 

+ dsC~dy"(t--s)-~.exp -- ds'.oc~'s(s') 

x ( V +  kBT 0 \ B --M O-V) fs( ; s) (65) 

This should be completed by the self-consistency equation for the dynami- 
cal part ~+ of the friction force 

o~+(B;t)fs(B;t)=f~ dsC~dy"(t-s)exp{-f~ids' *s162 ) } 

x (V- t  kar  0 O-V J f s( B; s) (66) 

The system of equations (65)-(66) is closed and represents the 
dynamical evolution of the state of the B particle on the �9 ~ e-2 time scale. 
This condition can be rewritten ear ,~ 1, so that using Eq. (10), we conclude 
that Eq. (65) applies for times t satisfying 

Z PB Z 
t,~ k ~ v / - ~  x - -  (67) p kv/-k---jr/M 

The spatial diffusion process has not yet started at this time scale, since 
time t is very short compared to the time needed to cover the B particle 
radius with the thermal velocity. However the fluid hydrodynamics is 
already at work. The time scale (67) thus characterizes the relaxation of the 
velocity of the B particle, while its spatial state is not yet affected and will 
relax only on a longer time scale. 

Clearly, the derived equation is not of a Fokker-Planck type. The 
main reason is that the friction force due to the bath builds up on the same 
time scale as that characterizing the gas dynamics, which leads to memory 
effects in the relaxation of particle B. The friction force ~ thus has to be 
constructed in a self-consistent way and depends on the whole history of 
the Brownian motion. 

Equation (65) and its systematic derivation are the main results of the 
present work. 
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5. LONG-TIME LIMIT OF THE REDUCED EQUATION 

In this section, we discuss briefly the long-time limit of the system 
(65)-(66). Note, however that we stay in the time window r ~ e -2, since it 
is only there that these equations represent the evolution of the system. 
On longer time scales (e.g., z ~ e-3, r ~ e-4), we expect the spatial relaxation 
to occur through the Smoluchowski equation (see footnote 3 in the Intro- 
duction)/ 12~ 

In the long-time limit, the B-particle velocity distribution will relax 
toward the stationary solution of (65), that is, toward the Maxwellian 
distribution. In the final stage, we can then write 

v + k a T  0 \ B b--V)A( ;t)~o (68) 

and the friction force ~ will accordingly decay to zero, too. Then to first 
order in this quantity, we can put ~B -~ 0 in the expression (66) for ~+ and 
obtain 

, ( k.r_0  
~+(B; t) fB(g', t) "~ fo ds c~'dyn(t--s) V-~ M OVJ fB(B; s) (69) 

The limiting form of the reduced equation for fs(B; t) then simplifies to 

o B ' o (  ro_) -~fB( ;t)=IodS((t-s)~- ~" V-t M OVJ fa(B;s) (70) 

where the time-dependent friction coefficient 

((t) = (B O(t) + rCdY"(t) (71) 

has been introduced. ~(t) is the Dirac distribution. 
This asymptotic form for the reduced equation of the B distribution 

calls for several comments. First, though much simpler than the complete 
equation (65) [together with (66)], it still exhibits a non-markovian 
nature. However, the nonlocality of (65) in velocity space--hidden in the 
self-consistont definition of o~+ in (66)--in is now removed and the 
simplified form (70) only involves the Fokker-Planck operator 

In this sense, the velocity can be seen as following a "generalized Ornstein- 
Uhlenbeck process," still characterized by a transition probability sharply 
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peaked around the mean value (i.e., only small jumps occur), but now 
keeping the memory of its whole previous history. 

In particular, whereas for the Ornstein-Uhlenbeck process the B 
velocity relaxes in an exponential way, c~" 3~ the long-time behavior of the 
friction coefficient ((t) modifies the nature of the thermalization process. 
In other words, the way ((t) decays with time does affect the thermalization 
process itself, i.e., the relaxation of f s (B;  t) toward the Maxwell distribu- 
tion. This is a crucial difference with the standard Fokker-Planck (or 
Langevin) equation, where only the time-integrated friction coefficient 
~o" dt ((t) plays a role. These equations lead in particular to an exponential 
decay of the velocity autocorrelation function, i.e., an exponentially fast 
thermalization. This differs substantially from our case. Indeed, ((t) is 
known from hydrodynamic arguments to exhibit a t -3'2 long-time tail. t2~ 
We thus expect fB(B; t) from Eq. (70) to decay in an algebraic way toward 
the Maxwell distribution. This behavior can be verified on the first 
moments o f f , (B ;  t), i.e., the mean velocity (for a full discussion, see next 
section), mean squared fluctuations of the velocity, etc. A closed equation 
for these moments can be obtained by multiplying Eq. (70) by V, VV,... and 
then integrating over the velocity. However, an exact solution of Eq. (70) 
can be found in Refs. 21 and 22, where all these results can be directly 
checked. 

This nonexponential relaxation and its implications will be discussed 
in the conclusions of the paper (Sect. 8). 

6. VELOCITY AUTOCORRELATION FUNCTION AND THE 
STOKES-EINSTEIN RELATION 

As we discussed above, the reduced equation (65) [together with 
(66)] characterizes the relaxation of the velocity of the B particle, while the 
spatial relaxation will occur on a longer time scale. As we shall see in this 
section, this time scale separation allows one to compute explicitly the 
velocity ACF of the B particle. In spite of the nonlocal nature of the 
complete system (65)-(66), we will eventually recover the Stokes-Einstein 
relation between the diffusion and the friction coefficient. ~2~ 

Let us study the dynamical evolution of the mean velocity Vr e of the 
B particle, defined as 

rOB(t) = f dV ~fB(B; t) (72) 

Since Vu(t) relaxes on the time scale r ~ e --•, f~  will be assumed to evolve 
according to Eq. (65). The evolution equation for ~r can then be 
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obtained by multiplying (65) by V and integrating over the velocity. This 
yields 

0t0 0-V'~ (v+kBT.M 0 ', B V.I t /=  f dV (,,V 0-V) f . ( ; t )  

+ ds~aYn(t-s) j d V V - ~ . e x p  - du~e(u) 

x V+ M Ou fs(B;s) (73) 

The first term is calculated by an integration by parts, yielding 

0( 
IdVV~-~. V-~ ~,j ~-v/fe(B)=-VB(t) (74) 

The second term needs a more careful analysis. Let us introduce the notation 

' k~TO_~ 
)'(V;tls)=exp{-!~dus v-~ M OVJ fB(B;s) (75) 

We thus have to compute 

f dV V ~---~.,(V; t l s ) = - f  dV ,(V; tls) (76) 

where an integration by parts has been performed. According to (75), 
7(V; t ls) solves the following initial value problem: 

I (0~+ L~an(t))),(V; t I s )  - -  0, t>~s 
k~T 0 "~ (77) 

~9,(v;t--sls)= v-~ -ff O-v/fB(B;s), t=s 

Integrating Eq. (77) over V, one obtains 

O f d V  ~,(V; tls) + i d V  .Wo(t) ~,(V; tls) = 0 (78) Ot 
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But according to Eq. (A.1) in the Appendix, the action of the operator ~e  
involves multiplication by the total friction force ~ and then derivation 
with respect to V. The second term in (78) thus vanishes, since 

0 
dv.v:(,) ~(v; ,Is)= I dv ~ .  (~.~(v; ,is)) =0 

and we are left with 

We thus eventually find 

0 1 dV ~,(V; t[s) =0 
Ot 

(79) 

(8o) 

I dV y(V; t l s )=fdVy(V;  t=s]s) 

M OVJ fs(B; s) 

= Vr (81) 

Combining Eqs. (73), (74), (76), and (81), we obtain a closed equation for 
VB of the form 

~We(t)  = - ds((t--s)~rB(s) (82) 

where ( ( t )=  (B 5(0 + cgOy.(t) is the time-dependent friction coefficient. 
Introducing the Laplace transform 

VB(z) = dt exp( - z .  t) VB(t) (83) 

one obtains the explicit solution for ~B(z) as 

~ ( z )  ve(t = o) (84) 
z+~(z) 

where ~(z) denotes the Laplace transform of the time-dependent friction 
coefficient. 
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Equation (84) characterizes the relaxation of the mean velocity of the 
suspended sphere in a situation in which the B particle is initially out of 
equilibrium. But according to Onsager's principle of regression of fluctua- 
tions, this equation should as well describe the relaxation of a fluctuation 
of the velocity of the B particle at equilibriumJ TM This can be explicitly 
verified here. 

At equilibrium, the B-particle velocity autocorrelation function is 
defined as 

(V(t) .V(O))r162 1. . .N) (85) 

where peq(B, 1---N) is the canonical equilibrium probability density of the 
system, and V(t) denotes the velocity of the B particle propagated in time 
through the dynamics of the complete system. Formally, this relation can 
be rewritten 

(V(t).V(0))~q = J" dB V(0) . I  d l . . . d N  V(t) p~q(B, 1 . . .N)  

= I dB V(0). (V(t)),.~. Fcq(v(0)) (86) 

where FCq(v) is the equilibrium distribution function of particle B alone, 
and (V(t ) )  .... denotes the time-dependent mean velocity of the B particle, 
averaged over the fluid variables, for a given initial out-of-equilibrium state 
of velocity V(0). 

But this mean velocity will, satisfy the evolution equation (82) derived 
previously by eliminating the fluid variables. This yields for the Laplace 
transform of the velocity ACF 

ka TIM (V(z). v(o))oq (87) 

The diffusion coefficient can be directly deduced from this relation, using 

D - f ;  dt (V(t).  V(O)) ~q 

= ( ~7(Z = 0)" V(O) ) eq (88) 
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This yields 

D= _ k~ T/M = ks T (89) 
~(z = O) M~t 

where, according to (71), the microscopic expression for the (integrated) 
friction coefficient (/. is given by 

~,,._= Io +~- dr ~(r) 

1 f/~ dt (.~-_(1; - t ) .  o~(1; 0))(eq]R, (90) 
=(~4  3MknT 

with ~ given in (62), and the microscopic forces defined in (64). 
Equation (89) is precisely the Stokes-Einstein relation for the friction 

coefficient. 

7. F R I C T I O N  C O E F F I C I E N T  A N D  THE H Y D R O D Y N A M I C  L I M I T  

In this section, we discuss the microscopic formula (90) obtained for 
the friction coefficient. Our aim is twofold. First, we would like to connect 
these results to the friction coefficient in the response of the fluid to an 
imposed motion of the B particle. Second, we would like to obtain, at least 
in some limits, explicit expressions for the friction coefficient as a function 
of the microscopic characteristics of the system (B-particle diameter, trans- 
port coefficients of the fluid,...). This can be achieved by using the results 
of van Beijeren and Dorfman (DVB), concerning the kinetic theory of 
hydrodynamic flows. 1171 

In accordance with (90), the friction coefficient is the sum of two 
terms. The first term, (B, characterizes the static effect of instantaneous 
collisions between the B particle and the gas. The remaining part of the 
friction coefficient involves a time integral of a force-force correlation func- 
tion, reflecting the dynamical correlations induced by time-displaced colli- 
sions between the gas and the B particle. As we discussed in our previous 
work (Ref. 24, henceforth cited as II), formula (90) is equivalent to the 
Kirkwood formula for smooth potentials, relating the friction coefficient to 
the time integral of the force autocorrelation function. In the case of hard- 
sphere interaction, however, the force is replaced by the momentum trans- 
ferred to the B particle during instantaneous collisions, and the separation 
into a static term and a dynamical part then occurs (see II for further 
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details). Moreover, it is interesting to note that the same microscopic 
expression for the friction coefficient was obtained in the limit considered 
in our previous work, e ~ 0, all other parameters kept constant. As dis- 
cussed in the introduction, this limit leads to the Fokker-Planck equation 
for the B particle, so that its evolution exhibits a Markovian nature. We 
thus see that the same properties of the fluid are involved in both limits, 
but they enter the dynamical laws at different levels. They are intrinsic 
hydrodynamic properties of the fluid. 

Let us consider the case in which the B particle has an imposed 
velocity U(t). This amounts to representing the B-particle distribution by 
a Dirac fi-function in velocity space, centered on the mean velocity ~r 
U(t), with no thermal fluctuations around this value. The mean friction 
force ~f-~ acting on B can be then obtained from Eq. (82), determining 
evolution of the mean velocity of the B particle, 

.~ ( t )  = -- dsM((t--s) U(s) (91) 

which identifies ((t)  as the time-dependent friction coefficient in the 
hydrodynamic sense. We would like to stress the fact that this result holds 
(as shown in Sect. 6) although the reduced equation (65) is nonlocal in 
velocity space! 

Let us now consider the dynamical part of the friction coefficient, 
which we defined in (71) and (90), as 

( a y o ( t ) - - -  dl ds.~_(1; -s).~.~+(l'O) ffq(l[R) (92) 
3Mks T 

Our aim now is to connect this expression to the calculations of DVB, who 
have computed the drag on a macroscopic sphere moving with constant 
velocity. The surrounding gas was assumed to obey an extended Boltzmann 
equation. 

To thts end, we first introduce an auxiliary function f " ( l i R )  defined as 

fC(llR;t)= ds.~-_(1; - s ) . V f f q ( l l  R) 

= fods exp( - s~r) ~_  ( 1 )- @feq( 1 [ R) (93) 
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where ~.r is the fluid propagator [see Eq. (A.2) in the appendix]. ~r is a 
unit vector introduced to establish the connections with the DVB analysis. 
According to (93), f<(l lR;  t) satisfies the following differential equation: 

~+ fC(llR;t)=.~-(1)f~q(llR)'9 (94) 

Now if we define ~( 1 [R; t) through the relation 

f<(11R; t)=feq(11R) ~u(11R; t) (95) 

then Eq. (94) can be rewritten 

m -~+ ~(IIR;t)=T'(B, 1 ) ~ v l . 9  (96) 

where v w is the velocity of a gas particle, and the operator T'(B, 1 ) is that 
defined in DVB: 

27 2 . # ) f i ( R - ~ - # - r l ) [ b ~ ~  1 ) - l ]  T'(B, 1)= ( ~ ) I  d# ( -v l  .0) 0(-Vl S 

(97) 

the operator b ~01 changes the velocity v I of the gas particle to v l - 2 ( v  I �9 0) 0. 
Equation (96) is equivalent to the inhomogeneous Boltzmann equa- 

tion (4.4) in DVB. In their work, ~(1 I R; t) represents the dynamical 
correction to the distribution of the gas, induced by recollision events 
between the gas particles and the suspended sphere, which moves with 
velocity ~'. The authors obtained approximate solutions of this equation in 
the limit where the mean-free path t" is small compared to the radius 27/2 
of the suspended sphere. This solution was obtained by decomposing the 
distribution functions into a hydrodynamic part and a boundary layer part. 
We refer to their paper for further details. ~17) Their solution may be used 
to compute the dynamical part of ~yn. Indeed, with the aid of (92), (93), 
and (95), the dynamical contribution can be rewritten as 

MkBT(dyn(t)=f dl ~'+(1;O ) ~g(llR;t) f~ (98) 

where we used the isotropy of the system when introducing 9. In DVB, the 
r.h.s, of (98) is interpreted as the dynamical part of the drag force exerted 
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by the fluid on the suspended sphere moving with velocity 9. The estab- 
lished connection between both approaches reflects the linear-response 
theory, and can be physically interpreted through Onsager's principle of 
regression of fluctuations. 

In the limit of long times, we can then use the results (6.43) and (6.44) 
of DVB to obtain to lowest order in l /Z 

2nvlZ 
(dy,( t~ m ) - - ~  (S (99) 

where ~s is the Boltzmann friction coefficient, defined in (62), and 71 the 
shear viscosity of the gas, estimated within the Boltzmann approximation. 
Collecting both contributions (s and ~dyn(t---+ 00), we then recover, as 
expected, the Stokes law for the friction coefficient 

2n~Z 
( r=  | d t ( ( t )  - (100) 

M 

In this limit, the diffusion coefficient acquires its Stokes-Einstein form 

kBT kBT 
D = M--~I- 2nrlZ (101) 

8. C O N C L U S I O N S  

In this paper, we considered the Brownian motion of a single heavy 
particle moving in a bath of light particles. Our study started with a 
microscopic description of the system, in terms of the coupled dynamical 
evolution equations for the distribution functions of the B particle and of 
the host fluid. The latter was assumed to evolve according to an extended 
Boltzmann equation which correctly describes the effects of collisions 
between the gas particles and the suspended sphere. 

Our aim was to derive a reduced equation for the B particle by 
eliminating the gas degrees of freedom in the limit of small mass ratio 
e = (re~M)V2. However, even in the e ~ 0 limit, we kept the mass densities 
of both components to be of the same order of magnitude. The multiple- 
time-scale analysis has been used to construct a uniform expansion in e. 
We derived in this way a new reduced equation (65) governing the evolu- 
tion of the velocity distribution of particle B. This equation turned out to 
be nonlocal in time and in velocity space. The corresponding memory 
terms result from building up of the friction force by the reaction of the 
suspending gas to the motion of B. However, in spite of its non-Markovian 
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character, this reduced equation allowed us to compute the velocity 
autocorrelation function of the B particle (87). Moreover, we recovered 
explicitly the Stokes-Einstein law relating the (spatial) diffusion coefficient 
to the friction coefficient (89). Finally, the derivation yielded a microscopic 
expression for the friction coefficient, reducing to the Stokes law in the 
hydrodynamic limit, where the mean-free path of the gas is small compared 
to the radius of the suspended sphere (100). 

Our work is not the first attempt to obtain the reduced equation for 
the distribution function of the B particle from a microscopic point of 
view. ~4-~~ However, all previous approaches derive a (local) Fokker-  
Planck equation governing the dynamical evolution of the B particle by 
taking the re~M--* 0 limit with all other parameters kept constant. Such a 
limit implies an asymptotically vanishing mass density ratio, while in the 
present work, we maintained this ratio at a constant value. 

This crucial difference is the source of the non-Markovian character of 
the reduced equation for the velocity distribution of the B particle, 
Eq. (65). Indeed, as discussed in the introduction, when m/M---, O, while the 
mass density ratio is kept constant, the velocity of particle B is expected to 
decay on a hydrodynamic time scale of the suspending fluid. Therefore, the 
reaction of the fluid to the motion of the Brownian particle takes a finite 
time to occur (compared to the relaxation time of the velocity of particle 
B), and the friction force due to the fluid is accordingly displaced in time 
and velocity space [see Eq. (66)]. As shown in Sect. 5, this non-markovian 
effect leads to a "slow" thermalization, algebraic in time, in contrast to the 
exponentially decay predicted by the Langevin equation. This nonexponen- 
tial behavior is in complete agreement with the predictions of the fluctuating 
hydrodynamics approaches, t~5- ~o~ which lead to the generalized Langevin 
equation, Eq. (3). Numerical simulations of colloidal suspensions, based on 
fluctuating Lattice Bolztmann techniques, (25~ confirm the presence of the 
so-called "long-time tails" in the velocity autocorrelation function of the 
Brownian particles. Moreover these algebraic decays has been observed 
experimentally in the "short-time" dynamics (i.e., on the scale of the relaxa- 
tion of the velocity of the Brownian particles) of colloidal suspensions, the 
most recent experiments using diffusing wave spectroscopy (DWS) techni- 
ques.C26) 4 

The results derived here suggest some directions for future work. First, 
the extended Boltzmann equation was taken as a starting point, which can 

4 Note that the colloidal suspensions exactly meet the two crucial prescriptions of the studies 
limit, namely large mass ratio M/m between colloids and fluid particles, together with a mass 
density of colloids of the same order as the fluid mass density (prescribed to avoid sedimen- 
tion of the suspended particles). 
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be expected to be valid in the Grad limit. This conjecture could perhaps 
be verified explicitly by starting from the BBGKY hierarchy for hard 
spheres, (19) and applying directly to it the present limit defined in (7). 
In particular, we could in principle compute the e expansion of correlations 
induced in the bath by the presence of particle B. It would be then possible 
to check whether the results obtained in this work become indeed exact  in 
the limit (7). 

On the other hand, it would be interesting to generalize the analysis 
to an arbitrary number of suspended particles, in order to obtain the 
generalized reduced equation for the N-particle suspension. In this case, we 
expect the hydrodynamic interactions between the different suspended 
particles to be nonlocal in time, too. 

The reduced equation we obtained here characterizes the relaxation of 
the velocity distribution of B, while the spatial distribution evolves on a 
much longer time scale. Because of this time scale separation, one then 
expects the spatial distribution to relax according to the local Smoluchowski 
equation. In principle, one could recover this equation from the same 
microscopic approach by pursuing the expansion up to the corresponding 
time scale, t ~ Z2/D,  which corresponds to the r4 variable. Because of the 
complexity of the analysis, we have performed up to now the corresponding 

calculations only for the case of an ideal (collisionless) suspending gas. 
Even in this case, in spite of the absence of hydrodynamic modes in the 
bath, memory effects are still present and they show once two or more 
Brownian particles are present. Work along these lines is being carried out. 

APPENDIX  

In this appendix, we give the full expressions for the propagators Z~ 
and s With proper dimensions, LOs can be written 

fi k a T  a \ 

where the mean force o~§ t) is defined self-consistently by Eq. (66). 
On the other hand, the fluid propagator ~.r reads 

"0-~ -- T(-~ 1 ) - A s ( l )  (A.2) 

where A B(1) is the linearized Boltzmann operator, and T(_~ l) charac- 
terizes the effect of collisions between and the gas and the B particle fixed 
at point R. The expression for As(l)  is given by 1~9) 
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An(l) 7t(l IB)=fCq(1 IR) fd2  fd~  [ v , - v 2 ) . # ]  

• 0 [ ( v t  - v2)-  ~ ]  6(r ,  - r2) ~(v2) 

• ~b(v2)[b~(i, 2 ) - 1  ] (A.3) 

where T(1 IB) is a function of the fluid variables 1 = {r,, v~}, and ~b(v) is 
the Maxwell distribution 

m 3/2 
~ b ( v ) = ( ~ )  exp(  2kB mv2~T/ (A.4) 

The operator bo(1, 2) acting on a function g(vt, v2) replaces the velocities 
(v~, %) by their postcollisional values 

[ba(1, 2) Z](v,, v2) =X(v, - [(v, - v2) - 0] O, v2 + [(v, - v2) �9 0] d) (A.5) 

Finally, T~(B, 1) can be written as 

x (J  (R------ ~ -  r , )  b~~ 1)--5 (R  + ~ o-- r , ) )  (A.6) 

where ~o) ba (B, I) changes the velocity v, of the gas particle into v', = v , -  
2Iv,-6"] & 
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